Normal and diseased personal eye modeling using age-appropriate lens parameters

2012 
Personalized eye modeling of normal and diseased eye conditions is attractive due to the recent availability of detailed ocular measurements in clinic environments and the promise of its medical and industrial applications. In the customized modeling, the optical properties of the crystalline lens including the gradient refractive index, the lens bio-geometry and orientation are typically assigned with average lens parameters from literature since typically they are not clinically available. Although, through the optical optimization by assigning lens parameters as variables, the clinical measured wavefront aberration can be achieved, the optimized lens biometry and orientation often end up at edges of the statistical distribution. Without an effective validation of these models today, the fidelity of the final lens (and therefore the model) remains questionable. To develop a more reliable customized model without detailed lens information, we incorporate age-appropriate lens parameters as the initial condition of optical optimization. A biconic lens optimization was first performed to provide a correct lens profile for accurate lower order aberration and then followed by the wavefront optimization. Clinical subjects were selected from all ages with both normal and diseased corneal and refractive conditions. 19 ammetropic eyes ( + 4D to −11D), and 16 keratoconus eyes (mild to moderate with cylinder 0.25 to 6D) were modeled. Age- and gender-corrected refractive index was evaluated. Final models attained the lens shapes comparable to the statistical distribution in their age.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    4
    Citations
    NaN
    KQI
    []