Dependence of aminoglycoside 3′-phosphotransferase VIII activity on serine/threonine protein kinases in Streptomyces rimosus

2005 
In Streptomyces rimosus, selection for resistance to the aminoglycoside antibiotic kanamycin triggers the normally silent aminoglycoside 3′-phosphotransferase VIII gene (aphVIII). The expression of APHVIII is accompanied by amplification of the chromosomal DNA fragment containing the aphVIII gene. Earlier, S. rimosus aphVIII gene was isolated and sequenced. Using in vitro labeling and immunoprecipitation with anti-APHVIII antibodies, we have demonstrated that endogenous protein kinases (PKs) in extracts of S. rimosus strain S683 actively phosphorylate two serine residues in the APHVIII molecule. The amount of phosphate incorporated into APHVIII in the presence of Ca2+ is 1.84-fold greater than that without Ca2+. Analysis of ingel autophosphorylation and phosphorylation of the substrate incorporated into the gel matrix has shown that modification of APHVIII is catalyzed by two serine/threonine PKs (74 kDa and 55 kDa). The activity of 55-kDa PK is dependent on Ca2+ and calmodulin. The specific kanamycin phosphotransferase activity of exhaustively phosphorylated APHVIII is 3.72 times higher than that of the unmodified enzyme. It is proposed that the above PKs may be involved in the regulation of kanamycin resistance in S. rimosus.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    10
    Citations
    NaN
    KQI
    []