Dark matter interpretation of the origin of non-thermal phenomena in galaxy clusters

2011 
Aims. We studied the multi-frequency predictions of various annihilating dark matter (DM) scenarios in order to explore the possibility to interpret the still unknown origin of non-thermal phenomena in galaxy clusters. Methods. We consider three different DM models with light (9 GeV), intermediate (60 GeV), and high (500 GeV) neutralino mass and study their physical effects in the atmosphere of the Coma cluster. The secondary particles created in the neutralino annihilation processes produce a multi-frequency spectral energy distribution (SED) of non-thermal radiation and also heat the intracluster gas, which we test against the observations available for the Coma cluster from radio to gamma-rays. The various DM-produced SEDs are normalized by the condition to fit the Coma radio halo spectrum, thus obtaining best-fit values of the annihilation cross-section σV and of the central magnetic field B0. Results. We find that it is not possible to interpret all the non-thermal phenomena observed in galaxy clusters in terms of DM annihilation. The light-mass DM model with 9 GeV mass produces too little power at all other frequencies, while the high-mass DM model with 500 GeV produces a large excess power at all other frequencies. The intermediate-mass DM model with 60 GeV and τ ± composition is marginally consistent with the HXR and gamma-ray observations, but narrowly fails to reproduce the EUV and soft X-ray observations. The intermediate-mass DM model with 60 GeV and b¯ b composition is, on the other hand, always below
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    96
    References
    11
    Citations
    NaN
    KQI
    []