Deep Learning-Based Superresolution Reconstruction for Upper Abdominal Magnetic Resonance Imaging: An Analysis of Image Quality, Diagnostic Confidence, and Lesion Conspicuity.

2021 
OBJECTIVES The aim of this study was to investigate the impact of a deep learning-based superresolution reconstruction technique for T1-weighted volume-interpolated breath-hold examination (VIBESR) on image quality in comparison with standard VIBE images (VIBESD). METHODS Between May and August 2020, a total of 46 patients with various abdominal pathologies underwent contrast-enhanced upper abdominal VIBE magnetic resonance imaging (MRI) at 1.5 T. After data acquisition, the precontrast and postcontrast T1-weighted VIBE raw data were processed by a deep learning-based prototype algorithm for deblurring and denoising the images as well as for enhancing their sharpness (VIBESR). In a randomized and blinded manner, 2 radiologists independently analyzed the image data sets using the unprocessed images VIBESD as a standard reference. Outcome measures were as follows: overall image quality, anatomic clarity of organ borders, sharpness of vessels, artifacts, noise, and diagnostic confidence. All ratings were performed on an ordinal 4-point Likert scale. If the MRI examination encompassed a hepatic lesion, the maximum diameter of the largest hepatic lesion was quantified, and lesion sharpness and conspicuity were evaluated on an ordinal 4-point Likert scale. In addition, a post hoc regression analysis for lesion evaluation was computed. Finally, interrater/intrarater agreement was analyzed. RESULTS The overall image quality, anatomic clarity of organ borders, and sharpness of vessels in both precontrast and postcontrast images were rated significantly higher in VIBESR than in VIBESD (P 0.9). CONCLUSIONS The data-driven superresolution reconstruction (VIBESR) is clinically feasible for precontrast and postcontrast upper abdominal VIBE MRI, providing improved image quality, diagnostic confidence, and lesion conspicuity compared with standard VIBESD images.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    5
    Citations
    NaN
    KQI
    []