Deletion of the metabolic transcriptional coactivator PGC1β induces cardiac arrhythmia

2011 
Aims Peroxisome proliferator-activated receptor-γ coactivators PGC1α and PGC1β modulate mitochondrial biogenesis and energy homeostasis. The function of these transcriptional coactivators is impaired in obesity, insulin resistance, and type 2 diabetes. We searched for transcriptomic, lipidomic, and electrophysiological alterations in PGC1β −/− hearts potentially associated with increased arrhythmic risk in metabolic diseases. Methods and results Microarray analysis in mouse PGC1β −/− hearts confirmed down-regulation of genes related to oxidative phosphorylation and the electron transport chain and up-regulation of hypertrophy- and hypoxia-related genes. Lipidomic analysis showed increased levels of the pro-arrhythmic and pro-inflammatory lipid, lysophosphatidylcholine. PGC1β −/− mouse electrocardiograms showed irregular heartbeats and an increased incidence of polymorphic ventricular tachycardia following isoprenaline infusion. Langendorff-perfused PGC1β −/− hearts showed action potential alternans, early after-depolarizations, and ventricular tachycardia. PGC1β −/− ventricular myocytes showed oscillatory resting potentials, action potentials with early and delayed after-depolarizations, and burst firing during sustained current injection. They showed abnormal diastolic Ca2+ transients, whose amplitude and frequency were increased by isoprenaline, and Ca2+ currents with negatively shifted inactivation characteristics, with increased window currents despite unaltered levels of CACNA1C RNA transcripts. Inwardly and outward rectifying K+ currents were all increased. Quantitiative RT-PCR demonstrated increased SCN5A , KCNA5 , RYR2 , and Ca2+-calmodulin dependent protein kinase II expression. Conclusion PGC1β −/− hearts showed a lysophospholipid-induced cardiac lipotoxicity and impaired bioenergetics accompanied by an ion channel remodelling and altered Ca2+ homeostasis, converging to produce a ventricular arrhythmic phenotype particularly during adrenergic stress. This could contribute to the increased cardiac mortality associated with both metabolic and cardiac disease attributable to lysophospholipid accumulation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    26
    Citations
    NaN
    KQI
    []