Aberrant expression of long non‑coding RNAs in peripheral blood mononuclear cells isolated from patients with gouty arthritis
2019
Gouty arthritis (GA) is the most common inflammatory and immune-associated disease, and its prevalence and incidence exhibit yearly increases. The aim of the present study was to analyse the expression profile variation of long non-coding RNAs (lncRNAs) in GA patients and to explore the role of lncRNAs in the pathogenesis of GA. The peripheral blood mononuclear cells of GA patients and of healthy controls (HCs) were used to detect for the differentially expressed lncRNAs by microarray. The functional annotations and classifications of the differentially expressed transcripts were predicted using Gene Ontology (GO) and pathway analysis. The results were then verified by reverse transcription-quantitative (RT-q)PCR. A total of 1,815 lncRNAs and 971 mRNAs with a >2-fold difference in the levels of expression in the GA patients compared with those in the HCs were identified. According to the GO functional enrichment analysis, the differentially expressed lncRNAs were accumulated in terms including protein binding, catalytic activity and molecular transducer activity. The pathways predicted to be involved were the tumor necrosis factor signaling pathway, osteoclast differentiation, NOD-like receptor signaling pathway and NF-κB signaling pathway. The expression of six lncRNAs was measured by RT-qPCR and the results were consistent with those of the microarrays. Among these lncRNAs, {"type":"entrez-nucleotide","attrs":{"text":"AJ227913","term_id":"3183951","term_text":"AJ227913"}}AJ227913 was the most differentially expressed lncRNA in GA patients vs. HCs. The expression of several lncRNAs was significantly changed in GA patients compared with that in HCs, which suggests that these lncRNAs with differential expression levels may have an important role in the development and progression of GA.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
39
References
2
Citations
NaN
KQI