Iterative Learning Control With Data-Driven-Based Compensation.

2021 
The robust iterative learning control (RILC) can deal with the systems with unknown time-varying uncertainty to track a repeated reference signal. However, the existing robust designs consider all the possibilities of uncertainty, which makes the design conservative and causes the controlled process converging to the reference trajectory slowly. To eliminate this weakness, a data-driven method is proposed. The new design intends to employ more information from the past input-output data to compensate for the robust control law and then to improve performance. The proposed control law is proved to guarantee convergence and accelerate the convergence rate. Ultimately, the experiments on a robot manipulator have been conducted to verify the good convergence of the trajectory errors under the control of the proposed method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []