Atomic Force Microscopy and FT-IR Spectroscopy Investigations of Human Heart Valves

2006 
Human aortic, mitral, tricuspid and pulmonary heart valves were in- vestigated by the contact mode atomic force microscopy (AFM) in air, and using FT-IR spectroscopy in the frequency range 950-4000 cm −1 . Heart valves were collected post mortem from 65-78 years old patients who died from non-cardiac diseases. All of the examined valves showed considerable heterogeneity in the surface topography of collagen fibrils as well as in their organization on the tissue sur- face. The AFM images revealed areas with significantly different spatial orga- nization of the collagen fibril bundles. We observed zones with multidirectional, stacked collagen fibrils as well as areas of thin fibrils packed regularly, densely and "in phase". The majority of the collagen fibrils reproduced the typical transverse D-banding pattern, with the band interval varying in rather wide range of 70-90 nm. Using AFM imaging, objects that correspond to some pathological states of heart valves at their early stages, i.e. some forms of mineral deposits, were observed. The FT-IR spectra allowed us to recognize main components, i.e. collagen and elastin, in different layers (ventricularis, fibrosa) of the valve leaflets as well as they gave also support for the presence of mineral deposits on the valve surface. The presented results showed, that the AFM imaging and FT-IR spectroscopy can be applied as a complementary methods for structural characterization of heart valves at the molecular and supramolecular levels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    17
    Citations
    NaN
    KQI
    []