Development of a combined opening switch for the project of generator on inductive storages

2010 
The article proposes a fundamentally new approach to the problem of breaking high currents of 100kA or more. The vacuum discharger and the vacuum interrupter differ significantly in the rate of electric strength recovery, size of electrode erosion and etc. This is due to the difference in the type of the discharge. In the report considered we suggested that to align these values the current I should be closed through the spark gap prior to moving the electrodes of the vacuum interrupter; at this its value is above the initial by ΔI (ΔI-current, ΔI/I 0 ∼5÷10·10 − ). The excess ΔI-current flows through the vacuum interrupter, but in the reverse direction. In the course of moving the electrodes apart, the ΔI-current falls to zero with a time constant t=L/R, where L and R are the inductance of the contour (vacuum interrupter- spark gap) and resistance of the discharge of the discharge gap, respectively. This makes it possible to quickly recover the electric strength of the gap between the contacts, substantially reduce the electrode erosion and significantly decrease the breaking voltage of the ΔI-current. At the final stage the discharge of the countercurrent battery recovers the vacuum strength of the discharge gap.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    0
    Citations
    NaN
    KQI
    []