Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition‐Metal Spinels

2017 
Exploring efficient and low-cost electrocatalysts for the oxygen-reduction reaction (ORR) and oxygen-evolution reaction (OER) is critical for developing renewable energy technologies such as fuel cells, metal–air batteries, and water electrolyzers. A rational design of a catalyst can be guided by identifying descriptors that determine its activity. Here, a descriptor study on the ORR/OER of spinel oxides is presented. With a series of MnCo2O4, the Mn in octahedral sites is identified as an active site. This finding is then applied to successfully explain the ORR/OER activities of other transition-metal spinels, including MnxCo3−xO4 (x = 2, 2.5, 3), LixMn2O4 (x = 0.7, 1), XCo2O4 (X = Co, Ni, Zn), and XFe2O4 (X = Mn, Co, Ni). A general principle is concluded that the eg occupancy of the active cation in the octahedral site is the activity descriptor for the ORR/OER of spinels, consolidating the role of electron orbital filling in metal oxide catalysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    314
    Citations
    NaN
    KQI
    []