ATP-gated P2X3 receptors constitute a positive autocrine signal for insulin release in the human pancreatic β cell

2010 
Extracellular ATP has been proposed as a paracrine signal in rodent islets, but it is unclear what role ATP plays in human islets. We now show the presence of an ATP signaling pathway that enhances the human β cell's sensitivity and responsiveness to glucose fluctuations. By using in situ hybridization, RT-PCR, immunohistochemistry, and Western blotting as well as recordings of cytoplasmic-free Ca2+ concentration, [Ca2+]i, and hormone release in vitro, we show that human β cells express ionotropic ATP receptors of the P2X3 type and that activation of these receptors by ATP coreleased with insulin amplifies glucose-induced insulin secretion. Released ATP activates P2X3 receptors in the β-cell plasma membrane, resulting in increased [Ca2+]i and enhanced insulin secretion. Therefore, in human islets, released ATP forms a positive autocrine feedback loop that sensitizes the β cell's secretory machinery. This may explain how the human pancreatic β cell can respond so effectively to relatively modest changes in glucose concentration under physiological conditions in vivo.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    101
    Citations
    NaN
    KQI
    []