Description and applications of a mobile system performing on-roadaerosol remote sensing and in situ measurements

2018 
The majority of ground-based aerosols observations are limited to fixed locations, narrowing the knowledge on their spatial variability. In order to overcome this issue, a compact Mobile Aerosol Monitoring System (MAMS) was developed to explore the aerosol vertical and spatial variability. This mobile laboratory is equipped with a micropulse lidar, a sun-photometer and an aerosol spectrometer. It is distinguished by other transportable platforms through its ability to perform on-road measurements and its unique feature lies in the sun-photometer capable to track the sun during motion. The system presents a great flexibility, being able to respond quickly in case of sudden aerosol events such as pollution episodes, dust, fire or volcano outbreaks. On-road mapping of aerosol physical parameters such as attenuated aerosol backscatter, aerosol optical depth, particle number and mass concentration and size distribution is achieved through the MAMS. The performance of remote sensing instruments on-board has been evaluated through intercomparison with instruments in reference networks (i.e. AERONET and EARLINET), showing that the system is capable of providing high quality data. This also illustrates the application of such system for instrument intercomparison field campaigns. Applications of the mobile system have been exemplified through two case studies in northern France. MODIS AOD data was compared to ground-based mobile sun-photometer data. A good correlation was observed with R 2 of 0.76, showing the usefulness of the mobile system for validation of satellite-derived products. The performance of BSC-DREAM8b dust model has been tested by comparison of results from simulations to the lidar-sun-photometer derived extinction coefficient and mass concentration profiles. The comparison indicated that observations and model are in good agreement in describing the vertical variability of dust layers. Moreover, on-road measurements of PM 10 were compared with modelled PM 10 concentrations and with ATMO Hauts-de-France and AIRPARIF air quality in situ measurements, presenting an excellent agreement in horizontal spatial representativity of PM 10 . This proves a possible application of mobile platforms for evaluating the chemistry-models performances.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    7
    Citations
    NaN
    KQI
    []