Direct and Energy-Transfer-Mediated Charge-Transfer State Formation and Recombination in Triangulene-Spacer-Perylenediimide Multichromophores: Lessons for Photovoltaic Applications

2019 
We study the dynamics of primary photoexcitations in three symmetric donor–spacer–acceptor–spacer–donor multichromophores with increasing oligophenylene spacer length, following selective donor or acceptor excitation. Energy levels of the donor and acceptor moieties are tailored to facilitate splitting of the excited state into a lower-lying charge-transfer (CT) state, mimicking the functionality of a donor–acceptor interface for charge generation, thus resulting in long-lived charge separation. Ultrafast electronic energy transfer (ET) from the donor followed by fast hole (back)transfer from the acceptor populates the molecules’ CT states. However, the CT efficiency is found to be close to unity, independent of the donor or acceptor photoexcitation. The ratio of CT and recombination rates, which reflects the population of CT states, increases with the oligophenylene spacer length for both direct hole transfer and hole transfer following ET, boosting the population of CT states under continuous excitation...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    8
    Citations
    NaN
    KQI
    []