Increase in rat striatal acetylcholine content by bromocriptine: Evidence for an indirect dopaminergic action

1981 
Abstract Bromocriptine, at the optimal dose and time of 4 mg/kg, 90 min, increased the content of acetylcholine in the rat striatum by about 30% without affecting the acetylcholine content in other brain regions. Striatal choline acetyltransferase and acetylcholinesterase activities and sodium-dependent high affinity choline uptake were not affected by the in vivo administration or the in vitro incubation with even high amounts of the drug. The increase in striatal acetylcholine by bromocriptine was mediated through the dopaminergic system since pretreatment with pimozide or penfluridol, powerful dopamine receptor antagonists, completely prevented the effect while parachlorophenylaline and phenoxybenzene pretreatment were ineffective. The action of bromocriptine, differently from that of apomorphine, was also blocked upon inhibition of tyrosine hydroxylase by alphamethylparatyrosine, suggesting that intact catecholamine synthesis is necessary for the drug to act. The requirement of dopamine by bromocriptine was further indicated when no potentiation of the cholinergic response to bromocriptine occurred following induction of dopamine receptor supersensitivity by long-term 6-hydroxydopamine lesion of the nigroneostriatal pathway. On the other hand, evidence is presented to show that bromocriptine acts in synergism with dopamine as the latency period for the onset of bromocriptine's cholinergic action was significantly decreased when it was administered in combination with a subthreshold dose of L-dopa, the dopamine precursor. There also was no summation of bromocriptine's increase with apomorphine's increase in striatal acetylcholine content at supramaximal doses possibly indicating that the same population of intrastriatal cholinergic neurons is the common target of both drugs. It is proposed that bromocriptine exerts an inhibitory effect on the striatal cholinergic neurons through a stimulation of the dopaminergic system but, differently from apomorphine, it requires the presence of endogenous dopamine for its action.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    18
    Citations
    NaN
    KQI
    []