Recent advances in the use of ASEDRA in post processing scintillator spectra for resolution enhancement

2012 
The ASEDRA (Advanced Synthetically Enhanced Detector Resolution Algorithm, patent pending) has been successfully applied as a post processing algorithm to both sodium iodide (NaI(Tl)) and cesium iodide (CsI(Na)) scintillator detectors to synthetically enhance their realized spectral data resolution by as much as a factor of three, wherein from these detectors the “raw” unprocessed spectra are traditionally of poor resolution. ASEDRA uses noise reduction and built-in high resolution Monte Carlo radiation transport based detector response functions (DRFs) to rapidly post-process a spectrum in a few seconds on a standard laptop; gamma lines are extracted with an accuracy that makes the scintillator detectors competitive with higher resolution, higher material cost detectors. ASEDRA differs from other tools in the field, such as Sandia’s GADRAS software, in that ASEDRA performs a differential spectrum attribution and cumulative extraction from the sample spectrum, rather than an integral-based approach, as in GADRAS. Previous publications have highlighted the successful application of ASEDRA in samples with plutonium and various isotopes. A new SmartID nuclide identification package to accompany ASEDRA has recently been implemented for test and evaluation purposes for sample attribution; in addition, the application of ASEDRA+SmartID has occurred with success in long dwell cargo monitoring and SNM detection applications, enabling new protocols for HEU detection. Overall, this paper presents recent developments and results along with a discussion of follow-on steps in the development of ASEDRA as an effective field gamma spectrum analysis tool for low cost scintillators.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    3
    Citations
    NaN
    KQI
    []