Cold pool driven convective initiation: using causal graph analysis to determine what convection permitting models are missing
2020
The data in this folder comprises all data necessary to produce the Figures presented in our paper (Hirt et al, 2020, in review, Quarterly Journal of the Royal Meteorological Society). Corresponding Jupyter notebooks, which were used to analyse and plot the data, are available at https://github.com/HirtM/cold_pool_driven_convection_initiation.
The datasets are netcdf files and should contain all relevant metadata.
cp_aggregates2*:
These datasets contain different variables of cold pool objects.
For each variable, several different statistics are available, e.g. the average/median/some percentile over the area of each cold pool object.
Note that the data does not contain tracked cold pools. Any sequence of cold pool indices is hence meaningless.
Each cold pool index does not only have information about its cold pool, but also its edges (see mask dimension).
P_ci_*
These datasets contain information on convection initiation within cold pool areas, cold pool edge areas or no cold pool areas.
No single cold pool objects are identified here.
prec_*
As P_ci_*, but for precipitation.
synoptic_conditions_variables.nc
This dataset contains domain averaged (total domain, not cold pool objects) timeseries of selected variables.
The selected variables were chosen in order to describe the synoptic and diurnal conditions of the days of interest.
This dataset is used for the causal regression analysis.
All the data here is derived from the ICON-LEM simulation conducted within HDCP2:
http://hdcp2.eu/index.php?id=5013
Heinze, R., Dipankar, A., Carbajal Henken, C., Moseley, C., Sourdeval, O., Tromel, S., Xie, X., Adamidis, P., Ament, F., Baars, H., Barthlott, C., Behrendt, A., Blahak, U., Bley, S., Brdar, S., Brueck, M., Crewell, S., Deneke, H., Di Girolamo, P., Evaristo, R., Fischer, J., Frank, C., Friederichs, P., Gocke, T., Gorges, K., Hande, L., Hanke, M., Hansen, A., Hege, H.-C., Hoose, C., Jahns, T., Kalthoff, N., Klocke, D., Kneifel, S., Knippertz, P., Kuhn, A., van Laar, T., Macke, A., Maurer, V., Mayer, B., Meyer, C. I., Muppa, S. K., Neggers, R. A. J., Orlandi, E., Pantillon, F., Pospichal, B., Rober, N., Scheck, L., Seifert, A., Seifert, P., Senf, F., Siligam, P., Simmer, C., Steinke, S., Stevens, B., Wapler, K., Weniger, M., Wulfmeyer, V., Zangl, G., Zhang, D. and Quaas, J. (2016): Large-eddy simulations over Germany using ICON: A comprehensive evaluation. Q.J.R. Meteorol. Soc., doi:10.1002/qj.2947
M.Hirt, 9 Jan 2020
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
63
References
15
Citations
NaN
KQI