Exploiting interactions among polymorphisms contributing to complex disease traits with boosted generative modeling.

2006 
Although there has been great success in identifying disease genes for simple, monogenic Mendelian traits, deciphering the genetic mechanisms involved in complex diseases remains challenging. One major approach is to identify configurations of interacting factors such as single nucleotide polymorphisms (SNPs) that confer susceptibility to disease. Traditional methods, such as the multiple dimensional reduction method and the combinatorial partitioning method, provide good tools to decipher such interactions amid a disease population with a single genetic cause. However, these traditional methods have not managed to resolve the issue of genetic heterogeneity, which is believed to be a very common phenomenon in complex diseases. There is rarely prior knowledge of the genetic heterogeneity of a disease, and traditional methods based on estimation over the entire population are unlikely to succeed in the presence of heterogeneity. We present a novel Boosted Generative Modeling (BGM) approach for structure-mod...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    6
    Citations
    NaN
    KQI
    []