miR-29a is repressed by MYC in pancreatic cancer and its restoration drives tumor suppressive effects via downregulation of LOXL2

2019 
Pancreatic ductal adenocarcinoma (PDAC) is an intractable cancer with a dismal prognosis. MicroRNA-29a (miR-29a) is commonly downregulated in PDAC, however, mechanisms for its loss and role still remain unclear. Here we show that in PDAC, repression of miR-29a is directly mediated by MYC via promoter activity. RNA-seq analysis, integrated with miRNA target prediction, identified global miR-29a downstream targets in PDAC. Target enrichment coupled with gene ontology and survival correlation analyses identified the top five miR-29a downregulated target genes (LOXL2, MYBL2, CLDN1, HGK and NRAS) that are known to promote tumorigenic mechanisms. Functional validation confirmed that upregulation of miR-29a is sufficient to ablate translational expression of these five genes in PDAC. We show that the most promising target among the identified genes, LOXL2, is repressed by miR-29a via 39-UTR binding. Pancreatic tissues from a PDAC murine model and patient biopsies showed overall high LOXL2 expression with inverse correlations with miR-29a levels. Collectively, our data delineate an anti-tumorigenic, regulatory role of miR-29a, and a novel MYC-miR-29a-LOXL2 regulatory axis in PDAC pathogenesis, indicating the potential of the molecule in therapeutic opportunities. Implications: This study unravels a novel functional role of miR-29a in PDAC pathogenesis, and identifies a MYC-miR-29a-LOXL2 axis in regulation of the disease progression, implicating miR-29a as a potential therapeutic target for PDAC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    8
    Citations
    NaN
    KQI
    []