Eco-corona formation on the nanomaterials in the aquatic systems lessens their toxic impact: A comprehensive review.

2021 
Abstract Recent studies have shown that nanosized materials including plastics as a major cause of concern in the aquatic ecosystem. Fortunately, in the aquatic environment, the surface of the materials is often colonized by exudates of aquatic microorganisms (biofilm), where these materials are attached and surrounded by a secreted matrix with a sticky layer. The significance of these biofilms on the existence and beneficial implications of these pollutants has been studied in recent decades. Here we develop the concept of these pollutants as a complex matrix of polymers to which Extracellular Polymeric Substances (EPS) binds to form eco-corona modifying its density and surface charge of these particles. This review critically integrates the outstanding properties and functions of algal EPS in the aquatic environment and their dynamic interactions of early colonization on the surface of these pollutants, the impact of biofilm formation on stability, reactivity and, toxicity from the current literature. Due to the modifications of the environmental processes, EPS can have an impact on the toxicity thus special attention is focused on their behavior to decrease the toxicity of the pollutants in the aquatic environment. Although there has been an increasing number of researches in this area, further progress is needed to explore the extent to which ecological processes could be impacted, including the modifications in the behavior of aquatic pollutants. Thus, this review provides a recent perspective into the mechanisms of how eco-corona formation mitigates the toxicity of nanomaterials prevalent in aquatic ecosystems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    90
    References
    4
    Citations
    NaN
    KQI
    []