Genetic diversity, breed composition and admixture of Kenyan domestic pigs
2018
The genetic diversity of African pigs, whether domestic or wild has not been widely studied and there is very limited published information available. Available data suggests that African domestic pigs originate from different domestication centers as opposed to international commercial breeds. We evaluated two domestic pig populations in Western Kenya, in order to characterize the genetic diversity, breed composition and admixture of the pigs in an area known to be endemic for African swine fever (ASF). One of the reasons for characterizing these specific populations is the fact that a proportion of indigenous pigs have tested ASF virus (ASFv) positive but do not present with clinical symptoms of disease indicating some form of tolerance to infection. Pigs were genotyped using either the porcine SNP60 or SNP80 chip. Village pigs were sourced from Busia and Homabay counties in Kenya. Because bush pigs (Potamochoerus larvatus) and warthogs (Phacochoerus spp.) are known to be tolerant to ASFv infection (exhibiting no clinical symptoms despite infection), they were included in the study to assess whether domestic pigs have similar genomic signatures. Additionally, samples representing European wild boar and international commercial breeds were included as references, given their potential contribution to the genetic make-up of the target domestic populations. The data indicate that village pigs in Busia are a non-homogenous admixed population with significant introgression of genes from international commercial breeds. Pigs from Homabay by contrast, represent a homogenous population with a “local indigenous’ composition that is distinct from the international breeds, and clusters more closely with the European wild boar than African wild pigs. Interestingly, village pigs from Busia that tested negative by PCR for ASFv genotype IX, had significantly higher local ancestry (>54%) compared to those testing positive, which contained more commercial breed gene introgression. This may have implication for breed selection and utilization in ASF endemic areas. A genome wide scan detected several regions under preferential selection with signatures for pigs from Busia and Homabay being very distinct. Additionally, there was no similarity in specific genes under selection between the wild pigs and domestic pigs despite having some broad areas under similar selection signatures. These results provide a basis to explore possible genetic determinants underlying tolerance to infection by ASFv genotypes and suggests multiple pathways for genetically mediated ASFv tolerance given the diversity of selection signatures observed among the populations studied.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
24
References
26
Citations
NaN
KQI