A Rate Theory Model of Radiation-Induced Swelling in an Austenitic Stainless Steel

2021 
Many rate theory models of cavity (void) swelling have been published over the past 50 years, all having the same, or similar, structures. A rigorous validation of the models has not been possible because of the dearth of information concerning the microstructures that correspond with the swelling data. Whereas the lack of microstructure information is still an issue for historical swelling data, in the past 10–20 years data have been published on the evolution of the microstructure (point defect yields from collision cascades, cavity number densities, and dislocation densities/yield strengths) allowing certain gaps in information to be filled when considering historic swelling data. With reasonable estimates of key microstructure parameters, a standard rate theory model can be applied, and the model parameter space explored, in connection with historical swelling data. By using published data on: (i) yield strength as a function of dose and temperature (to establish an empirical expression for dislocation density evolution); (ii) cavity number densities as a function of temperature; and (iii) freely migrating defect (FMD) production as a function of primary knock-on atom (PKA) spectrum, the necessary parameter and microstructure inputs that were previously unknown can be used in model development. This paper describes a rate-theory model for void swelling of 316 stainless steel irradiated in the EBR-2 reactor as a function of irradiation temperature and neutron dose.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []