Initial cone-in-shell fast-ignition experiments on OMEGAa)

2011 
Fast ignition is a two-step inertial confinement fusion concept where megaelectron volt electrons ignite the compressed core of an imploded fuel capsule driven by a relatively low-implosion velocity. Initial surrogate cone-in-shell, fast-ignitor experiments using a highly shaped driver pulse to assemble a dense core in front of the cone tip were performed on the OMEGA/OMEGA EP Laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997); L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)]. With optimal timing, the OMEGA EP pulse produced up to ∼1.4 × 107 additional neutrons which is a factor of ∼4 more neutrons than without short-pulse heating. Shock-breakout measurements performed with the same targets and drive conditions demonstrate an intact cone tip at the time when the additional neutrons are produced. Velocity interferometer system for any reflector measurements show that x-rays from the shell’s coronal plasma preheat the inner cone wall of thin-walled Au cones, while the thick-walled cones that are...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    66
    Citations
    NaN
    KQI
    []