An extension of the Moran process using type-specific connection graphs.

2021 
Abstract The Moran process, as studied by Lieberman, Hauert and Nowak (2005) [1] , is a birth-death process that models the spread of mutations in two-type populations (residents-mutants) whose structure is defined by a digraph. The process' central notion is the probability that a randomly placed mutant will occupy the whole vertex set (fixation probability). We extend this model by considering type-specific graphs, and consequently present results on the fundamental problems related to the fixation probability and its computation. Finally, we view the resident-mutant competing forces as players that choose digraphs and indicate that the mutant's complete graph is a dominant strategy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    1
    Citations
    NaN
    KQI
    []