Asymptotic expansion for the transition densities of stochastic differential equations driven by the gamma processes

2020 
In this paper, enlightened by the asymptotic expansion methodology developed by Li(2013b) and Li and Chen (2016), we propose a Taylor-type approximation for the transition densities of the stochastic differential equations (SDEs) driven by the gamma processes, a special type of Levy processes. After representing the transition density as a conditional expectation of Dirac delta function acting on the solution of the related SDE, the key technical method for calculating the expectation of multiple stochastic integrals conditional on the gamma process is presented. To numerically test the efficiency of our method, we examine the pure jump Ornstein--Uhlenbeck (OU) model and its extensions to two jump-diffusion models. For each model, the maximum relative error between our approximated transition density and the benchmark density obtained by the inverse Fourier transform of the characteristic function is sufficiently small, which shows the efficiency of our approximated method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []