Targeting the human mdr1 gene by 125I-labeled triplex-forming oligonucleotides.

2000 
Antigene radiotherapy is our approach to targeting specific sites in the genome by combining the highly localized DNA damage produced by the decay of Auger electron emitters, such as 125I, with the sequence-specific action of triplex-forming oligonucleotides (TFO). As a model, we used the multidrug resistance gene (mdr1) overexpressed and amplified nearly 100 times in the human KB-V1 carcinoma cell line. Phosphodiester pyrrazolopyrimidine dG (PPG)-modified TFO complementary to the polypurine-polypyrimidine region of the mdr1 gene were synthesized and labeled with 125I-dCTP at the C5 position of two cytosines by the primer extension method. 125I-TFO were delivered into KB-V1 cells with several delivery systems. DNA from the 125I-TFO-treated cells was recovered and analyzed for sequence-specific cleavage in the mdr1 target by Southern hybridization. Experiments with plasmid DNA containing the mdr1 polypurine-polypyrimidine region and with purified genomic DNA confirmed the ability of the designed 125I-TFO t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    18
    Citations
    NaN
    KQI
    []