High altitude impairs nasal transepithelial sodium transport in HAPE-prone subjects.
2004
High-altitude pulmonary oedema (HAPE) occurs in predisposed individuals at altitudes >2,500 m. Defective alveolar fluid clearance secondary to a constitutive impairment of the respiratory transepithelial sodium transport contributes to its pathogenesis. Hypoxia impairs the transepithelial sodium transport in alveolar epithelial type II cells in vitro . If this impairment is also present in vivo , high-altitude exposure could aggravate the constitutive defect in sodium transport in HAPE-prone subjects, and thereby further facilitate pulmonary oedema. Therefore, the aim of the current study was to measure the nasal potential difference (PD) in 21 HAPE-prone and 29 HAPE-resistant subjects at low altitude and 30 h after arrival at high altitude (4,559 m). High-altitude exposure significantly decreased the mean±sd nasal PD in HAPE-prone (18.0±6.2 versus 12.5±6.8 mV) but not in HAPE-resistant subjects (25.6±9.4 versus 22.9±9.2 mV). This altitude-induced decrease was not associated with an altered amiloride-sensitive fraction, but was associated with a significantly lower amiloride-insensitive fraction of the nasal PD. These findings provide evidence in vivo that an environmental factor may impair respiratory transepithelial sodium transport in humans. They are consistent with the concept that in high-altitude pulmonary oedema-susceptible subjects, the combination of a constitutive and an acquired defect in this transport mechanism facilitates the development of pulmonary oedema during high-altitude exposure.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
34
References
51
Citations
NaN
KQI