TIME AND TEMPERATURE DEPENDENT PIEZORESISTIVE BEHAVIOR OF CONDUCTIVE ELASTOMERIC COMPOSITES

2018 
ABSTRACT We report about systematic studies on dynamic piezoresistive characteristics of conductive rubber composites. The temporal changes in electrical resistance of flexible electrically conductive rubber composites were simultaneously monitored during dynamic mechanical loading. Thus, influences of physical parameters such as frequency, temperature, strain amplitude, and matrix stiffness were explored in detail, and the mechanisms behind qualitatively discussed. The filler clusters were found to rearrange in the elastomer matrix during dynamic deformation, witnessed by the decrease in electrical resistance over time. Each test parameter had its own specific effect on the piezoresistance response, and the findings offered an understanding on the filler networking inside the solution styrene butadiene rubber matrix from the perspective of the dynamic piezoresistive characteristics. Higher piezoresistive response was observed near the glass transition temperature. We offer a deeper insight into the behav...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    7
    Citations
    NaN
    KQI
    []