2D Implosion Simulations with a Kinetic Particle Code

2016 
We perform two-dimensional (2D) implosion simulations using a Monte Carlo kinetic particle code. The paper is motivated by the importance of non-equilibrium effects in inertial confinement fusion (ICF) capsule implosions. These cannot be fully captured by hydrodynamic simulations while kinetic methods, as the one presented in this study, are able to describe continuum and rarefied regimes within one approach. In the past, our code has been verified via traditional shock wave and fluid instability simulations. In the present work, we focus on setups that are closer to applications in ICF. We perform simple 2D disk implosion simulations using one particle species. The obtained results are compared to simulations using the hydrodynamics code RAGE. In a first study, the implosions are powered by energy deposition in the outer layers of the disk. We test the impact of the particle mean-free-path and find that while the width of the implosion shock broadens, its location as a function of time remains very similar. In a second study, we focus on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock, the implosion dynamics and the formation of imposed fluid instabilities. Differences are due to the higher resolution of RAGE and statistical noise in the kinetic simulations. The current studies represent proofs-of-principle and serve as a stepping stone for more sophisticated ICF simulations in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    4
    Citations
    NaN
    KQI
    []