Isolation and characterization of a temperature-sensitive lethal strain of Anopheles arabiensis for SIT-based application

2018 
Background Malaria is still a global health problem and vector control is the cornerstone of disease control strategies using indoor residual insecticide spraying (IRS) and insecticide-treated nets. The situation is becoming acute with widespread resistance to the limited arsenal of available insecticide classes. Therefore, new and innovative tools to reduce Plasmodium transmission are in need and this situation raised considerable interest in using sterile insect technique (SIT) against human pest insects, particularly Anopheles malaria vectors. When considering a mosquito release programme, one of the first issues to be addressed is how to eliminate/separate the hematophagous vector females. In this paper, we report the development and evaluation of an Anopheles arabiensis temperature-sensitive lethal (tsl) strain towards its potential use for the development of a genetic sexing strain (GSS). Anopheles arabiensis male mosquitoes originated from North Cameroon were treated with 0.05% ethyl methanesulfonate (EMS). The mutagen was added to 10% sucrose solution and mosquitoes fed ad-libitum for 24h and 48h on a cotton wool soaked with sucrose-mutagen solution placed at the top of the cup. Treated males were then allowed to mate with wild virgin females and their progenies were screened for heat sensitivity from F3 to F8, until the isolation and establishment of a tsl strain which was further characterized by assessing its productivity (fecundity and fertility), larval development, adult longevity as well as nature and inheritance pattern of the tsl.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    7
    Citations
    NaN
    KQI
    []