Behind the scenes of streamflow model performance

2020 
Abstract. Streamflow is often the only variable used to constrain hydrological models. In a previous international comparison study, eight research groups followed an identical protocol to calibrate a total of twelve hydrological models using observed streamflow of catchments within the Meuse basin. In the current study, we hypothesize that these twelve process-based models with similar streamflow performance have similar representations of internal states and fluxes. We test our hypothesis by comparing internal states and fluxes between models and we assess their plausibility using remotely-sensed products of evaporation, snow cover, soil moisture and total storage anomalies. Our results indicate that models with similar streamflow performance represent internal states and fluxes differently. Substantial dissimilarities between models are found for annual and seasonal evaporation and interception rates, the number of days per year with water stored as snow, the mean annual maximum snow storage and the size of the root-zone storage capacity. Relatively small root-zone storage capacities for several models lead to drying-out of the root-zone storage and significant reduction of evaporative fluxes each summer, which is not suggested by remotely-sensed estimates of evaporation and root-zone soil moisture. These differences in internal process representation imply that these models cannot all simultaneously be close to reality. Using remotely-sensed products, we could evaluate the plausibility of model representations only to some extent, as many of these internal variables remain unknown, highlighting the need for experimental research. We also encourage modelers to rely on multi-model and multi-parameter studies to reveal to decision-makers the uncertainties inherent to the heterogeneity of catchments and the lack of evaluation data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    120
    References
    7
    Citations
    NaN
    KQI
    []