Effect of pressure on f-electron delocalization and oxidation in actinide dioxides

2014 
Using first principles calculations, we have investigated f-electron delocalization and oxidation in the actinide dioxides under pressure. Whilst UO2 is found on the verge of an insulator to metal transition at the equilibrium volume, increasingly larger pressures are required to delocalize f-electrons in NpO2, PuO2, and AmO2, respectively 49, 112, and 191 GPa. Compared to this broad range of pressures, the experimentally observed structural transitions, in all four dioxides, occur between 30 and 40 GPa, which leads us to conclude that the associated volume collapse is not due to f-electron delocalization. In contrast, oxidation of the dioxides is found to be linked to the degree of f-electron localization, but it emerges that for naturally occurring pressures (<10 GPa), higher oxides only exist for UO2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    1
    Citations
    NaN
    KQI
    []