The Role of Atomic and Molecular Processes in Magnetic Fusion Plasmas

2005 
Plasma edge physics (plasmas with temperatures in the 1 to 100 eV range, near solid surfaces) has become a key issue in controlled nuclear fusion research. As for the physics of the fully ionized hot plasma core, appropriate dimensionless parameters have been identified: present fusion research acts like wind‐channel experiments on downsized models, with respect to future fusion reactors. This is not longer possible for the plasma edge region due to dominant effects from atomic and surface processes. Integrated computational models comprising the physics of the plasma flow near boundaries, the atomic and molecular processes and the particle‐surface interactions are the only tool to evaluate present experimental results (LHD, JT60, Tore Supra, JET,…) with respect to their relevance for future fusion power experiments (ITER) or a reactor.In particular proton and electron collisions with the hydrogenic molecules H2, O2, T2, DT, and their ions, play a key role in cooling and attenuating the magnetically confi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    1
    Citations
    NaN
    KQI
    []