The roles and impacts of human hunter-gatherers in North Pacific marine food webs.

2016 
Most studies of the relationships of humans and ecosystems are presented in terms of human impacts on ecosystems1,2. However, our ability to understand and mitigate human impacts depends on research that elucidates the roles humans play in ecosystems including how they interact with other species3. In modern marine ecosystems, humans are depleting many commercial fisheries, causing major disruptions to ecosystem function and the persistence of species1,4,5,6,7. As a result, regulators have curtailed fisheries and excluded local peoples from traditional harvesting territories2. This is a critical problem for the Aleut peoples of the western Gulf of Alaska, who depend strongly on biotic resources from the marine communities8,9,10. This central dependence on marine resources stretches back throughout the nearly 10,000-year prehistory of human presence in the North Pacific, raising the questions of what kinds of impacts humans have had on marine species and ecosystems in this area and how should future impacts be managed. In general, the specific roles that local, prehistoric peoples have played in the structure and functioning of marine ecosystems are poorly documented and largely unknown or necessarily somewhat speculative. Unlike in many terrestrial systems, where there is increasing evidence that prehistoric humans likely contributed directly and indirectly to the extinction of a number of species, there is little evidence for such extinctions in marine systems11. This does not mean that prehistoric humans had no significant impacts on marine ecosystems. For example, in the Aleutian Islands, there is evidence that through hunting of sea otters, prehistoric humans may have caused certain areas to switch from algal-dominated kelp-forest habitats into sea-urchin-dominated barrens devoid of macroalgae12, a well-documented trophic cascade. This in turn could have limited the habitat and population of Steller’s sea cows, which also were probably hunted or scavenged occasionally by prehistoric humans13. Steller’s sea cows ultimately went extinct by 1768 as a result of Russian arrival to the Aleutian Islands and the introduction of commercial hunting and fishing14. The Sanak Island Biocomplexity Project was developed to investigate the integration of human foragers into marine ecosystems in the Western Gulf of Alaska3, a region considered one of the world’s last great fisheries. This region is inhabited by Aleut, descendants of the first people to inhabit the Aleutian Islands, which they colonized shorty after deglaciation. The greater far North Pacific ecosystem has experienced human subsistence harvesting for at least 10,000 years15, and except for a few isolated islands, the entire region was fully occupied by 7,000 years ago16. As a result, none of the modern fisheries in the region have a well-documented pre-fishing or pre-human baseline7,11, complicating management decisions. Sanak Island, with an approximately 7,000-year record of human habitation, is the largest island in a relatively isolated archipelago 50 km south of the mainland Alaska Peninsula, at the center of the Alaska Current, surrounded by some of the most important fisheries and sea mammal habitats in the entire Gulf of Alaska, and subject to a suite of competing management regimes. From the Russians removing the Aleut from the island to protect Enhydra lutris (sea otters) in 1824 to current fisheries bans to protect Eumetopias jubatus (Steller sea lions), it has also been the center of many endangered species conflicts. The Aleut moved from the Sanak Archipelago in the 1970s, but the nearshore waters are still harvested by indigenous commercial and subsistence foragers. In this study, we integrated anthropological data and food web data, analyses, and modeling to explore aspects of socioecological structure and associated dynamics that may inhibit or facilitate ecosystem stability in this region. To identify and quantify the trophic roles of human foragers in western Gulf of Alaska marine ecosystems in terms of their topological positions within complex networks of feeding interactions among taxa, we compiled detailed, highly resolved food web data for the Sanak intertidal and nearshore ecosystems. These comprehensive, cumulative food webs represent the architecture of the feeding relationships among co-occurring taxa that lived or frequently fed in those marine habitats since human introduction. We then used simulations of trophic dynamics to explore to what degree the introduction of a species with human-like food web roles as well as a capacity for strong feeding is likely to disrupt ecological integrity via subsequent extinctions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    34
    Citations
    NaN
    KQI
    []