Inclusion regions and bounds for the eigenvalues of matrices with a known eigenpair

2020 
Let ({\lambda}, v) be a known real eigenpair of a square real matrix A. In this paper it is shown how to locate the other eigenvalues of A in terms of the components of v. The obtained region is a union of Gershgorin discs of the second type recently introduced by the authors in a previous paper. Two cases are considered depending on whether or not some of the components of v are equal to zero. Upper bounds are obtained, in two different ways, for the largest eigenvalue in absolute value of A other than {\lambda}. Detailed examples are provided. Although nonnegative irreducible matrices are somewhat emphasized, the main results in this paper are valid for any square real matrix.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []