Transverse momentum broadening of high-energy partons from 3D lattice EQCD simulations

2020 
Heavy-ion collision experiments and related theoretical efforts of understanding the strong interaction constitute key endeavors in the modern pursuit of understanding nature. A central field of comparison for experiment and theory are the interactions of high-energy particles with a strongly interacting medium. The transverse momentum distribution of a high-energy particle broadens in crossing that very medium, quantified by the transverse collision kernel, C(b ⊥ ). It receives dominant infrared corrections which cannot be tackled perturbatively, even at weak coupling. In the present thesis, we calculated this contribution on the lattice in Electrostatic QCD as proposed by Caron-Huot and pioneered by Panero, Rummukainen, and Schafer. In order to put us into the position of extrapolating the discretization errors away, we developed a procedure to entirely remove discretization errors linear in the lattice spacing. Our data, provided at four different temperatures, render the common approximations of C(b ⊥ ) redundant.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []