Super-resolution photoacoustic imaging via flow induced absorption fluctuations

2017 
In deep tissue photoacoustic imaging the spatial resolution is inherently limited by the acoustic wavelength. We present an approach for surpassing the acoustic diffraction limit by exploiting temporal fluctuations in the sample absorption distribution, such as those induced by flowing particles. In addition to enhanced resolution, our approach inherently provides background reduction, and can be implemented with any conventional photoacoustic imaging system. The considerable resolution increase is made possible by adapting notions from super-resolution optical fluctuations imaging (SOFI) developed for blinking fluorescent molecules, to flowing acoustic emitters. By generalizing SOFI mathematical analysis to complex valued signals, we demonstrate super-resolved photoacoustic images that are free from oscillations caused by band-limited detection. The presented technique holds potential for contrast-agent free micro-vessels imaging, as red blood cells provide a strong endogenous source of naturally fluctuating absorption.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    2
    Citations
    NaN
    KQI
    []