CO2 laser-based dispersion interferometer utilizing orientation-patterned gallium arsenide for plasma density measurements

2013 
A dispersion interferometer based on the second-harmonic generation of a carbon dioxide laser in orientation-patterned gallium arsenide has been developed for measuring electron density in plasmas. The interferometer includes two nonlinear optical crystals placed on opposite sides of the plasma. This instrument has been used to measure electron line densities in a pulsed radio-frequency generated argon plasma. A simple phase-extraction technique based on combining measurements from two successive pulses of the plasma has been used. The noise-equivalent line density was measured to be 1.7 × 1017 m−2 in a detection bandwidth of 950 kHz. One of the orientation-patterned crystals produced 13 mW of peak power at the second-harmonic wavelength from a carbon dioxide laser with 13 W of peak power. Two crystals arranged sequentially produced 58 mW of peak power at the second-harmonic wavelength from a carbon dioxide laser with 37 W of peak power.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    8
    Citations
    NaN
    KQI
    []