One-Step Synthesis of High-Silica ZSM-5 Zeolite with Less Internal Silicon Hydroxyl Groups: Highly Stable Catalyst for Methanol to Propene Reaction

2021 
High-silica ZSM-5 zeolite with less internal silicon hydroxyl groups was directly synthesized through a one-step hydrothermal crystallization method. The physicochemical properties of high-silica ZSM-5 zeolite with less internal silicon hydroxyl groups together with its catalytic capability for methanol to propene reaction were roundly compared with that of commercial ZSM-5 zeolite and another high-silica ZSM-5 zeolite with similar acid distribution but different hydroxyl distribution to it. The results show that high-silica ZSM-5 zeolite with less internal silicon hydroxyl groups has good crystallinity, uniform crystal size and moderate acidity, which is a highly stable catalyst for methanol to propene reaction. Based on the characterization and reaction results, the high stability of high-silica ZSM-5 zeolite with less internal silicon hydroxyl groups in methanol to propene reaction proves that the distribution of silicon hydroxyl groups plays a significant role in the deactivation of ZSM-5 zeolite.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []