A conservative sliding mesh coupling procedure for U-RANS flow simulations

2016 
Purpose – This paper aims to simulate unsteady flows with surfaces in relative motion using a multi-block structured flow solver. Design/methodology/approach – A procedure for simulating unsteady flows with surfaces in relative motion was developed, based upon a multi-block structured U-RANS flow solver1. Meshes produced in zones of the flow field with different rotation speed are connected by sliding boundaries. The procedure developed guarantees that the flux conservation properties of the original scheme are maintained across the sliding boundaries during the rotation at every time step. Findings – The solver turns out to be very efficient, allowing computation in scalar mode with single core processors as well as in parallel. It was tested by simulating the unsteady flow on a propfan configuration with two counter-rotating rotors. The comparison of results and performances with respect to an existing commercial flow solver (unstructured) is reported. Originality/value – This paper fulfils an identifie...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    5
    Citations
    NaN
    KQI
    []