Controlling the Thermally Induced Phase Separation of Polymer/Ionic-Liquid Blended Films with Concentrated-Polymer-Brush-Decorated Hybrid Particles

2019 
The development of quasi-solid electrolytes for electrical devices operating at high voltages is important for addressing future energy storage requirements. Here, we report a new method to fabricate quasi-solid electrolytes through the thermally induced phase separation of a polymer/ionic liquid (polymer/IL) blend. In a polymer/IL blend that exhibits lower critical solution temperature-type phase separation, we demonstrate that the addition of silica particles decorated with concentrated polymer brushes (CPB-SiPs) can prevent macroscopic phase separation after heating, resulting in a quasi-solid electrolyte with a continuous IL phase. This is due to the adsorption of CPB-SiPs onto the polymer/IL interface in the phase-separated structure. We also reveal a relationship between the molecular weight of the CPB and the phase-separated structure. Namely, a quasi-solid film with a bicontinuous phase-separated structure is formed only when polymers with an appropriate molecular weight are grafted on the CPB-SiP...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    3
    Citations
    NaN
    KQI
    []