Nanoscale Control of Phase Variants in Strain-Engineered BiFeO3

2011 
Development of magnetoelectric, electromechanical, and photovoltaic devices based on mixed-phase rhombohedral–tetragonal (R-T) BiFeO3 (BFO) systems is possible only if the control of the engineered R phase variants is realized. Accordingly, we explore the mechanism of a bias induced phase transformation in this system. Single point spectroscopy demonstrates that the T → R transition is activated at lower voltages compared to T → −T polarization switching. With phase field modeling, the transition is shown to be electrically driven. We further demonstrate that symmetry of formed R-phase rosettes can be broken by a proximal probe motion, allowing controlled creation of R variants with defined orientation. This approach opens a pathway to designing next-generation magnetoelectronic and data storage devices in the nanoscale.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    69
    Citations
    NaN
    KQI
    []