Long-Term Music Exposure Prevents Age-Related Cognitive Deficits in Rats Independently of Hippocampal Neurogenesis.

2020 
Cognitive decline appears across aging. While some studies report beneficial effects of musical listening and practice on cognitive aging, the underlying neurobiological mechanisms remain unknown. This study aims to determine whether chronic (6 h/day, 3 times/week) and long-lasting (4-8 months) music exposure, initiated at middle age in rats (15 months old), can influence behavioral parameters sensitive to age effects and reduce age-related spatial memory decline in rats. Spontaneous locomotor, circadian rhythmic activity, and anxiety-like behavior as well as spatial working and reference memory were assessed in 14-month-old rats and then after 4 and 8 months of music exposure (19 and 23 months old, respectively). Spatial learning and reference memory data were followed up by considering cognitive status of animals prior to music exposure (14 months old) given by K-means clustering of individual Z-score. Hippocampal cell proliferation and brain-derived neurotrophic factor (BDNF) level in the hippocampus and frontal cortex were measured. Results show that music exposure differentially rescues age-related deficits in spatial navigation tasks according to its duration without affecting spontaneous locomotor, circadian rhythmic activity, and anxiety-like behavior. Hippocampal cell proliferation as well as hippocampal and frontal cortex BDNF levels was not affected by music across aging. Cognitive improvement by music in aging rats may require distinct neurobiological mechanisms than hippocampal cell proliferation and BDNF.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    110
    References
    0
    Citations
    NaN
    KQI
    []