Effect of Fermi Level Position in Intrinsic a-Si:H on the Evolution of Defect States under Light Exposure.

2005 
The evolution of the programmed defect-state distributions in intrinsic hydrogenated amorphous silicon (a-Si:H) due to light soaking was qualitatively determined from charge deep-level transient spectroscopy. The defect-state distribution in a-Si:H was programmed by applying a particular bias voltage on the metal-oxide-semiconductor structure while annealing the structure above the equilibration temperature. The programmed distributions simulate defect-state distributions in different parts of an actual a-Si:H solar cell, particularly in the intrinsic regions close to thep/i and i/n interfaces. The defect-state distribution in the bulk of the intrinsic layer is characterized by comparable contributions from the positively charged defect states above midgap, Dh, neutral states, Dz, and negatively charged states below midgap, De. In the programmedp-type (n-type) defect-state distribution there is an excess of the Dh (De) states. Light exposure modifies the p-type distribution that evolves to a broad distribution of states with a maximum around midgap. This distribution is dominated by Dz states with substantial contributions from Dh and De states. In case of n-type distribution light soaking only slightly influences the distribution by removing a part of the Dh states and by a small increase of Dz and De states.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    1
    Citations
    NaN
    KQI
    []