Maternal control of embryogenesis by MPK6 and its upstream MKK4/MKK5 in Arabidopsis

2017 
Summary In flowering plants, developing embryos reside in maternal sporophytes. It is known that maternal generation influences the development of next-generation embryos; however, little is known about the signaling components in the process. Previously, we demonstrated that Arabidopsis mitogen-activated protein kinase 6 (MPK6) and MPK3 play critical roles in plant reproduction. In addition, we noticed that a large fraction of seeds from mpk6 single-mutant plants showed a wrinkled seed coat or a burst-out embryo phenotype. Here, we report that these seed phenotypes can be traced back to defective embryogenesis. The defective embryos have shorter suspensors and reduced growth along the longitudinal axis. Furthermore, the cotyledons fail to bend over to progress to the bent-cotyledon stage. As a result of the uneven circumference along the axis, the seed coat wrinkles to develop raisin-like morphology after dehydration. In more severe cases, the embryo can be pushed out from the micropylar end, resulting in the burst-out embryo seed phenotype. Genetic analyses demonstrated that the defective embryogenesis of the mpk6 mutant is a maternal effect. Heterozygous or homozygous mpk6 embryos have defects only in mpk6 homozygous maternal plants, but not in wild-type or heterozygous maternal plants. The loss of function of MKK4/MKK5 also results in the same phenotypes, suggesting that MKK4/MKK5 might act upstream of MPK6 in this pathway. The maternal-mediated embryo defects are associated with changes in auxin activity maxima and PIN localization. In summary, this research demonstrates that the Arabidopsis MKK4/MKK5–MPK6 cascade is an important player in the maternal control of embryogenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    40
    Citations
    NaN
    KQI
    []