Consensus Control of Multiagent Systems with High-Order Nonlinear Inaccurate Dynamics and Dynamically Switching Undirected Topologies

2018 
This paper investigates the consensus control of a class of high-order nonlinear multiagent systems, whose topology is dynamically switching directed graph. First, the high-order nonlinear dynamics is transformed into the one-order dynamics by structuring a sliding mode plane; then, two consensus control protocols of the one-order dynamics are designed by feedback linearization, one of which is based on PD (proportion and derivative) and the other is based on PID (proportion, integral and derivative). Under these control protocols, it is proved that the consensus of new variable only requires a weaker topology condition; next, we prove that the consensus of the new variable is sufficient to the consensus of the states of multiagent systems, which implies that it only requires a weaker topology condition for the consensus of multiagent systems; finally, the study of an illustrative example with simulations shows that our results as well as designed control protocols work very well in studying the consensus of this class of multiagent systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []