Transmit Beamspace Design for FDA–MIMO Radar with Alternating Direction Method of Multipliers

2020 
Abstract Hybridization of a frequency diverse array (FDA) generated range-angle-time dependent beampattern with multiple input multiple output (MIMO) radar waveform diversity, namely, FDA-MIMO radar, provides more degrees-of-freedom to improve overall system performance. As the beampattern optimization needs an efficient method to approximate the desired beampattern and simultaneously minimize the cross-correlation sidelobes, we optimize the transmit beampattern over the beamspace matrix in this paper. That is, the transmit FDA antennas are divided into multiple overlapping subarrays and each subarray transmits an orthogonal waveform towards the target, whereas the weight vectors of all subarrays jointly form a beamspace matrix. Since the optimization problem turns to be a non-convex problem with a constant energy constraint, we propose an efficient algorithm based on alternating direction method of multipliers (ADMM) to solve it, which has a very fast convergence speed. The effectiveness and superiorities of the proposed method over existing methods are verified by extensive simulation results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    3
    Citations
    NaN
    KQI
    []