Influence of microscopic and macroscopic effects on attosecond pulse generation using two-color laser fields

2017 
Attosecond pulses and pulse trains generated by high-order harmonic generation are finding broad applications in advanced spectroscopies and imaging, enabling sub-femtosecond electron dynamics to be probed in atomic, molecular and material systems. To date, isolated attosecond pulses have been generated either by using very short few-cycle driving pulses, or by using temporal and polarization gating, or by taking advantage of phase-matching gating. Here we show that by driving high harmonics with a two-color linearly polarized laser field, the temporal window for time-gated phase matching is shorter than for the equivalent singe-color driving laser. As a result, we can generate quasi-isolated attosecond pulses with a peak width of ∼ 450 as using relatively long 26 femtosecond laser pulses. Our experimental data are in good agreement with theoretical simulations, and show that the phase matching window decreases by a factor of 4 - from four optical cycles in the case of a single-color fundamental driving laser, to one optical cycle in the case of two-color (ω-2ω) laser drivers. Finally, we also demonstrate that by changing the relative delay between the two-color laser fields, we can control the duration of the attosecond bursts from 450 as to 1.2 fs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    4
    Citations
    NaN
    KQI
    []