Morphology and water flux of produced cellulose acetate membranes reinforced by the design of experiments (DOE)

2021 
Abstract Cellulose acetate (CA) ultrafiltration membranes were successfully prepared using the non-solvent induced phase separation (NIPS) methodology. This technique is used to produce porous membranes for a large variety of applications. However, the formation of a dense skin during the process reduces membrane pure water flux (PWF). To overcome this issue, three parameters were investigated: CA/NMP (N-methyl-2-pyrrolidone) ratio in the casting solution, acetone (Ac)/water (W) ratio in the precipitation bath composition (PBC) and support material (glass/polyethylene). The effect of each factor on the mean pore size, water contact angle, porosity and PWF was supported by Taguchi design. The increase in the CA/NMP ratio reduced mean pore size and porosity. In contrast, there was an increase in porosity and hydrophilicity with increasing Ac/W ratio. The maximum value of PWF was obtained for membranes prepared using a PE support. ANOVA showed that most, but not all, factors had significant effects on the parameters measured.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    3
    Citations
    NaN
    KQI
    []