Dual impact of dissolved organic matter on cytotoxicity of PVP-Ag NPs to Escherichia coli: Mitigation and intensification

2019 
Abstract Cytotoxicity of silver nanoparticles (Ag NPs) is attributed to silver internalization, which can be depressed by dissolved organic matter (DOM) to form Ag-DOM. Ag-DOM are bioavailable and then silver internalization could be increased. Herein, 3 and 48-h Escherichia coli viability bioassays were employed to evaluate effect of fulvic acid and humic acid (10 mg L −1 ) on cytotoxicity of 30 and 100 nm PVP-Ag NPs. Moreover, zebrafish embryos were used as reference model to understand silver internalization routes. Ag ions or Ag-DOM internalization varied in routes to Escherichia coli and zebrafish embryos. Cytotoxicity mechanisms of PVP-Ag NPs are dynamic. In 3-h bioassays, cytotoxicity of PVP-Ag NPs mainly involves Ag particle-related toxicity. DOM significantly mitigated cytotoxicity of PVP-Ag NPs ( p Escherichia coli cells during 3-h exposures duration. In 48-h bioassays, cytotoxicity of PVP-Ag NPs is dependent on Ag ion-related and particle-related toxicity. Silver was internalized into Escherichia coli via Ag-DOM consumption as an indirect route. Thus, DOM promoted silver internalization into Escherichia coli but not into zebrafish embryos, significantly intensifying cytotoxicity ( p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    8
    Citations
    NaN
    KQI
    []