Negative bending mode curvature via Robin boundary conditions
2009
Abstract We examine the band spectrum, and associated Floquet–Bloch eigensolutions, arising in straight walled acoustic waveguides that have periodic structure along the guide. Homogeneous impedance (Robin) conditions are imposed along the guide walls and we find that in certain circumstances, negative curvature of the lowest (bending) mode can be achieved. This is unexpected, and has not been observed in a variety of physical situations examined by other authors. Further unexpected properties include the existence of the bending mode only on a subset of the Brillouin zone, as well as permitting otherwise unobtainable velocities of energy transmission. We conclude with a discussion of how such boundary conditions might be physically reproduced using effective conditions and homogenization theory, although the methodology to achieve these effective conditions is an open problem. To cite this article: S.D.M. Adams et al., C. R. Physique 10 (2009).
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
21
References
1
Citations
NaN
KQI